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ABSTRACT 

The purpose of this report is to document a cost-benefit analysis of the Landing Craft Air Cushion vehicle 
(LCAC) Selection System for craftmasters and engineers. A cost-benefit analysis for this selection system had not 
been conducted before, and it seemed worthwhile to see if there was a cost justification for the continued use of 
this system. The analysis in this paper indicates an annual net savings somewhere in the mnge of no savings to 
$350,000. The best guess is an annual net savings of about $160;000. About 70% of the distribution is centered 
on the range of $60,000 to $260,000 net savings per year. Because the bulk of the distribution covers an expected 
cost benefit to the LCAC tmining commands, we recommend the continued usage of the LCAC Selection System 
to premter candidates for training as craftmasters and engineers. Monitoring of the data and updates to the cost 
structure should be carried out periodically to detennine if these savings can be expected to continue into the future. 
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INTRODUCTION 

The ultimate justification for selection systems in the military is to help reduce training costs. By premtering 
candidates before they enter tIaining, selection systems lower the actual attrition rate that would have been evident 
had the selection system not been in place. If this difference in attrition rates with and without a selection system 
is large enough, then there are quantifiable cost savings to the training budget. 

The purpose of this report is to document a cost-benefit analysis of the Landing Craft Air Cushion Vehicle 
(LCAC) Selection System for craftmasters and engineers. A cost-benefit analysis for this selection system had not 
been conducted before, and it seemed worthwhile to see if there was a cost justification for the continued use of 
this system. 

Many elements of the cost-benefit analysis are subject to' uncertainty. In the present circumstances, we are 
uncertain about 1) the baseline attrition rate for LCAC craftmasters and engineers if a selection test battery were 
not operational, 2) the reduced attrition rate after the selection test battery has been put into place, 3) the actual 
costs for each training attrition, 4) the costs associated with replacing candidates who are rejected by the test 
battery, and 5) the number of students that will be trained in any given year. 

Despite these uncertainties, empirical data gathered from the use of the LCAC Selection System over the past 
few years and some reasonable estimates of the costs outlined above can be leveraged to construct a distribution of 
savings. The optimal way of handling these uncertainties is through probability theory. The Bayesian approach to 
data analysis uses probability theory to make the best inference conditioned on known information. In this paper, 
the Bayesian predictive distribution is used to help answer the question of whether the LCAC selection system 
reduces the attrition rate during training. 

The analysis in this paper indicates an annual net savings somewhere in the range of no savings to $350,000. 
The best guess is an annual net savings of about $160,000. About 70% of the distribution is centered in the range 
of $60,000 to $260,000 net savings per year. Because the bulk of the distribution covers an expected cost benefit 
to the LCAC training commands, we recommend the continued usage of the LCAC Selection System to premter 
candidates for training as craftmasters and engineers. Monitoring of the data and updates to the cost structure 
should be carried out periodically to determine if these savings can be expected to continue into the future. 

COSTS AND PROBABILITmS 

According to the LCAC training community, it costs $160,000 to train a craftmaster or engineer for the initial 
17 week training period. Approximately 30 students are trained in any given year. Therefore, we may take the 
annual training budget to be $4,800,000. When the LCAC community first approached NAMRL in 1987 to help 
reduce training attritions, the probability of an attrition was as high as 40%. The empirical data over the past 13 
years indicate that the probability of an attrition has ameliorated from that initial high level to somewhere in the 
range of 20 to 30%. One reasonable assigmnent of the probability for an attrition if there were no selection test 
battery is in the middle of this range at 25%. The cost due to attrition is thus 

$4, 800,000 x .25 = $1, 200,000. 

With the test battery operating to screen out potential attritions, one reasonable estimate as to the revised 
probability of attrition is about 18%. The justification for such a number is provided later in the report. The cost 
due to this revised attrition is thus 

$4,800,000 x .18 = $864, 000. 

Therefore, the savings based on this difference in attrition rates is estimated at 

$1,200,000 
$ 864,000 
$ 336,000 
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This savings is attributable to the effectiveness of the selection test battery in lowering attrition rates. We shall 
label this difference as ~, (delta). So, in this first example, we can find the savings just by computing a delta of 

~ .25 - .18 

.07 

. 07 x $160,000 x 30 $336,000 . 

There are costs attached to the use of the LCAC Selection System, so these must be subtracted from the 
savings just calculated to arrive at a net savings due to the system For the purpose of this report, we list three 
such administrative costs. We assign $50,000 for the travel and per diem costs to transport prospective LCAC 
trainees to the Naval Operational Medicine Institute (NOM!) in Pensacola, Florida. This figure can be ascertained 
fairly accurately since NOM! tests about 60 candidates per year, and the average travel and per diem costs are 
about $850 per candidate. 

The second cost concerns routine administration and upkeep of the LCAC test battery. NOM! must allocate 
personnel to run the test battery, maintain data bases, and oversee its administration. The system must be 
calibrated, checked, and undergo periodic software and hardware upgrades. For all of this, we assign an atbitrary 
cost of $40,000 per year. 

Finally, the LCAC Selection System will reject some percentage of the candidates sent to Pensacola. They will 
be rejected because the Selection System predicts them as failures during training. Currently, our best guess is that 
the system will rej ect about 38% of tlle candidates tested. 1 This is tlle most difficult cost to assess. How expensive 
is it to replace those candidates rejected by the test battery? If there is a large pool of qualified applicants, then 
this cost must be less than if there is difficulty in recruiting volunteers. For the sake of conducting these numerical 
exercises, $35,000 is assigned for this cost. 

These costs are simply my best guess so that I could commence with the numerical examples. I welcome the 
experts in the LCAC training community to critique these costs and provide more realistic numbers should they 
exist. However, the techniques for assessing the merit of the LCAC Selection System as outlined in this report 
remain the same. Any better cost estimates can be substituted into the framework provided here, and new analyses 
can easily be run to judge their impact. With these estimates in place, tile net savings ascribable to the LCAC 
Selection System for this example can be calculated to be $211,000. 

BRACKETING THE EXPECTED NET SAVINGS 

$336,000 
$ 50,000 
$ 40,000 
$ 35,000 
$211,000 . 

In the Introduction, it was mentioned that the uncertainty about the net savings could be bracketed between no 
savings at the low end and close to $400,000 at the high end. The no savings at tile low end results from a set of 
very pessimistic assumptions, while the savings at the high end results from a set of very optimistic assumptions. 
We will eventually argue that the truth lies somewhere between these extreme sets of assumptions. The set of 
pessimistic assumptions is examined first. 

Contrary to the initial example given above, suppose tilat tile true rate of attrition witilout the candidates first 
going through tile test battery is not 25%, but rather a lower value of 20%. And further, under this set of 

lThis figure is subject to change because the threshold score needed for a predicted pass was lowered in July 1998. 
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pessimistic assumptions, suppose that the LCAC test battety provides no extra information about a candidate's 
chance for success during training. With no extra information from the candidate's score on the test battety, the 
failure mte for the LCAC selected candidates remains at 20%. In this case, b.. = 0, and there is no savings at all 
due to the difference in attrition mtes. The "net savings" is actually a loss of -$125,000 due to the costs 
associated with opemting the test battety. Thus, it costs more to have a selection test battery than if candidates 
skipped the entire process and went directly into training. 

One the other hand, one could indulge in a very optimistic set of assumptions to arrive at a markedly different 
conclusion. Under this set of assumptions, the true mte of attrition rises to 30% without the selection test battery. 
The test battety, in addition, is actually more powerful in weeding out unsuccessful candidates than the limited 
sample size has led us to believe. Suppose that the mte of attrition when candidates are first screened by the test 
battery is only 12%. In this fortunate case, b.. = .30 - .12 = .18. The net savings realized is 

Savings .18 x $160,000 x 30 

$864,000 

Net Savings $864,000-$125,000 

$739,000. 

Of course, neither of these extreme set of assumptions is likely to be the trutlt The truth lies somewhere in the 
middle. That is why under a more reasonable set of assumptions, the extreme values do not lie between 
....;$125,000 and $739,000, but mther lie between the more restricted numbers given in the introductioIL We now 
turn to examine the data on which to base this reasonable set of assumptions. 

ORGANIZATION OF mE FREQUENCY DATA 

The estimates for the baseline attrition mte, that is, the attrition mte without a selection system, and the 
adjusted attrition mte after the implementation of a selection system, are based on empirical data. The LCAC 
seiection system has been opemtional at NOMI for about 8 years, beginning in October 1992. In this report, 
frequency data are examined from that initial start date to the present. In addition, there are data from the R&D 
phase prior to October 1992 when validation testing and initial operational usage took place at NAMRL. 

These frequency counts are best presented in a 2 x 2 table .as sketched in Fig. 1. The two columns of the table 
represent the predicted passes and the predicted failures, and .the two rows represent the actual passes and the 
actual failures. The numbers in the Predicted Pass column are the number of candidates who achieved scores 
above the composite score of +.14, and the number in the Predicted Fail column are the number of candidates who 
achieved -scores below that composite score. See Blower [3] for a description of the composite scores and the 
threshold score. 

There are four cells in the table that indicate the joint occurrence of one of the rows and columns. The 
breakdown of the predicted pass-actual pass cell and the predicted pass-actual fail cell is known from the training 
data. These are candidates who scored above the threshold and who therefore entered training. However, the 
breakdown of the predicted fail-actual pass cell and the predicted fail-actual fail cell is unknown because these 
cells represent the candidates rejected by the system. They never entered training and therefore we don't know 
how they would have fared in training. 

Nevertheless, some of the frequency counts in the data base can be placed in these last two cells. The subjects 
who participated in the R&D phase at NAMRL all entered !mining whatever their score on the test battery. TN,s 
entty into training despite the score on the test battery occurred during the validation stage of the selection system 
Also, the composite score and the threshold score in the early days of the selection system were based on different 
weightings and different predictor variables. In 1995, the threshold score was set at a value of +.14 and remained 
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Actual Pass 

Actual Fail 

Predicted Pass Predicted Fail 

Cell 1 Cell 3 

Score above Score below 

threshold and threshold and 

pass training >I< 
do not enter 
training >I< 

Cell 2 Cell 4 

Score above 
Score below 
thrash old and 

threshold and do not entar 
fail training >I< training >I< 

Marginal sums are recorded here 

Comp.osite Score Composite Score 
>= +.14 <+.14 

>I< See text for exceptions 

Marginal 
Sums are 
recorded 
here 

Figure 1: A 2 x 2 table to organize the empirical frequency data. 

there until July 1998. At that time, the threshold score was moved down to -.34 and it has remained there until 
the present. 

The +.14 threshold score will be used as an arbitrary dividing line to place the data into either the predicted 
pass or predicted fail column2• Therefore, because of the changing way of computing composite scores and 
threshold scores, there were a few early candidates who scored above +.14 but were rejected by the system as 
predicted fails. There are more candidates who scored below +.14, but because of the different conditions in effect 
at that time, were admitted into training. These candidates fall into the predicted fail column (given our criterion of 
separation at +.14), but since they did, in fact, enter training they can be placed into one of the two cells. 

Thus, some subjects in the data base can be unequivocally allocated to one of the four cells while the true 
status of other subjects remains unknown. These are all the subjects who scored below +.14 when that threshold 
was in effect, and those subjects who scored above +.14 when a different threshold was in effect and did not enter 
training. In addition to these subjects, the data base contains subjects who have taken the test battery and were 
predicted passes, but who have not yet started training. 

We would like to make a reasonable allocation of these subjects whose true status is unknown to one of the 
four cells of the table. Using all of this information, we can make inferences about the attrition rate with and 
without the selection system in place. This difference is needed so that 6. can be used to calculate the cost savings. 

In one case, we can make an extreme allocation where we place all of the predicted fails into the predicted 
fail-actual fail cell. We also place all of the predicted passes who did not enter training into the predicted 
pass-actual pass cell. This extreme allocation favors the LCAC system to the maximum extent possible. It is what 
we have labeled as the set of extremely optimistic assumptions above. 

In the other extreme allocation, all of the predicted fails can be placed into the predicted fail-actual pass cell, 
and all of the predicted passes placed into the predicted pass-actual fail cell. This form of an extreme allocation 
discredits the LCAC selection system to the maximum extent possible. It is what we have labeled as the set of 
extremely pessimistic assumptions in the discussion above. 

2 Any other composite score could have been used as the arbitrary dividing line to separate predicted passes and prediCted 
fails. In fact, we could choose a number of these different threshold scores to trace out an Receiver Operating Characteristic 
(ROC) curve from Signal Detection Theory. 
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It is much more likely that there is some "reasonable" split of these subjects into the four cells. We use the 
Bayesian approach to find such a reasonable split. Specifically, the Bayesian predictive distribution will help to 
ascertain the probability of various splits among the four cells given the known data. 

THE OBSERVED DATA 

Now let's look at some of the empirical data. Combining the data from the NAMRL R&D phase and the 
NOM! operational phase results in the frequencies given in Fig. 2. The first number given in each of the four cells 

Predicted Pass Predicted Fail 

NAMRL NOMI NAMRL NOMI 

50 + 166 17 + 27 
Actual Pass 216 44 260 

Cell 1 Cell 3 

NAMRL NOMI NAMRL NOMI 

8 + 35 6 +13 
Actual Fall 43 19 62 

Cell 2 Cell 4 
259 63 322 

Figure 2: A breakdown offrequency counts into a 2 x 2 table. These counts are known to be correctly placed into 
one of the four cells. 

is the NAMRL data, and the second number is the NOM! data. These numbers are all correctly placed into one of 
the four cells. The numbers are correctly placed under the predicted pass column because all of these subjects did 
enter training, and we know their training outcome. The numbers under the predicted fail colunm are also correctly 
placed because, although their current threshold scores are below + .14, at the time they took the test battery a 
different algorithm was in effect and they were predicted to be passes. They also entered training and we know 
their outcome as well. This column reflects, as well,. those subjects tested at NAMRL during the validation stage 
who entered training no matter what their composite score. 

Also in the data base are subjects whose training status is unknown. There are presently 196 subjects in this 
category. Forty of these subjects were predicted passes given the dividing line threshold score of +.14. They can 
be subdivided into two classes: those awaiting training whose training status will eventually become known and 
those who never entered training because at the time a different algorithm had them as predicted fails. A total of 
156 subjects falls below the threshold score of +.14 and are predicted fails. These subjects can also be subdivided 
into two classes. The bulk of these subjects were rejected by the test battery when the algorithm in effect at the 
time used a threshold score of +.14. Consequently, they never entered training and we will never know what their 
training outcome would have been The threshold score was changed from +.14 to -.34 in July 1998 as 
mentioned above. Therefore,. a small number of subjects will have threshold scores below +.14 but above -.35 so 
they will enter training, and eventually their outcome will be known as well. 

EXTREME ALLOCATION STRATEGIES 

To examine the extreme allocation strategies given these data, consider first the extreme allocation strategy ,. 
most disfavorable to the LCAC selection system. That is, allocate the 40 predicted passes whose status is unknown 
to the predicted pass-actual fail cell. Then allocate the 156 predicted fails whose status is unknown to the 
predicted fail-actual pass cell. See Fig. 3 where the first number in each cell is taken from Fig. 2 and the second 

5 





II 
! 

Predicted Pass Predicted Fail 

216 + (40) 44 + (0) 
Actual Pass 

256 44 300 

43 + (0) 19 + (156) 

Actual Fall 
43 175 218 

299 219 518 

Figure 4: An extreme allocation of the J 96 subjects whose status is unlrnown. This allocation is the one most 
favorable to the LCAC selection system. 

P(Attrite with selection system) 

42.08% 

43 
299 

14.38% 

6. 42.08% - 14.38% 

27.70%. 

Now, no one believes in either of these extreme allocation strategies. What kind of technique can be used to 
accomplish a more reasonable allocation of these 196 subjects? 

THE BAYESIAN PREDICTIVE DISTRIBUTION 

There is obviously some uncertainty attached to how we should allocate the 196 subjects with an unknown 
training status to a known training status. They could be split up in any number of ways. Two ways, albeit 
seemingly extreme, were just discussed on how to accomplish that split. Tills was done to bracket all the ways the 
split could be achieved by the most favorable and the most unfavorable to the cost-benefit analysis of the LCAC 
selection system. 

Intuition would tell us that, not knowing anything else that should influence the allocation, we should follow 
the ratio of the subjects whose training status is known. The Bayesian predictive distribution does what our 
intuition tells us should be done, but in a precisely quantifiable manner. The derivation of the Bayesian predictive 
distribution will not be repeated here. The technical details of the derivation and application to problems can be 
reviewed in Blower [1,2,4]. 

Technically, the predictive distribution used here to solve this allocation problem is called the beta-binomial 
distribution. It shall be a guide to making reasonable allocations of subjects which we sought as an alternative to 
the extreme strategies. Before we arrive at the technical definition of the predictive distribution, let us state in " 
words what we are doing. 

If we know that a penny is fair, then we have no problem detennining a "reasonable split" between Heads and 
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Tails. In 100 tosses of the penny, 48 Heads and 52 Tails would be considered a reasonable split, but 98 Heads and 
2 Tails would not if the penny were actually fair. If we didn't know the penny was fair, but had tossed it a number 
of times in the past and recorded the number of Heads and Tails, we could use this empirical data to predict future 
outcomes. If we had gotten six Heads in ten previous tosses we would intuitively feel that the probability for 
Heads could vety well lie between say .3 and .7, but not between .05 and .15. We would average over the various 
probabilities for Heads given this kind of support by the past empirical data in assessing the chances for obtaining 
a split of 20 Heads and 30 Tails in 50 future tosses. 

Let L(zIO) stand for the binomial likelihood of obtaining z "successes" in N trials. In our problem, z stands 
for the Inllnber of subjects to allocate to cellI (predict pass-actual pass), and N - z stands for the number of 
subjects to allocate to cell 2 (predict pass-actual fail). Now we introduce a parameter called 0 that influences the 
chance of each individual going into cell 1. Then clearly, 1 - 0 is the parameter that influences the chance of each 
individual going into cell 2. The binomial formula is 

(1) 

We have two allocation problems. The fIrst is to allocate the 40 subjects who are predicted passes into the ftrst 
column of the 2 x 2 table, and the second is to allocatet11e 156 subjects who are predicted failures into the second 
column We address the fIrst allocation problem. N in this case is 40 and z could be anywOOre from 0 to 40. The 
binomial formula gives us another reason to consider the extreme allocation of z = 0 or z = 40 to be highly 
unlikely. 

Let's re-examine the situation that was maximally unfavorable to the LCAC selection system. In this case, all 
40 subjects were allocated to cell 2, so N - z = 40 and z = O. For the time being, suppose we begin in a state of 
initial ignorance about too parameter 0, and since there are only two cells where the subjects could be allocated, 
we assign 0 = (1 - 0) = .5. Using Equation (1), the likelihood for this allocation of 40 subjects to cell 2 is, 

L(z = 010 = .5) (~O) .5°.540 

(~) 40! 

O! 40! 

1 

.5° = 1 

.540 == 9.09 X 10-13 

L(z = 010 = .5) = 1 x 1 x 9.09 X 10-13 

= 9.09 X 10- 13 . 

Similarly, the same low likelihood is obtained in the scenario most favorable to the LeAC Selection System. 
Now z = 40 and N - z = 0, but you can see from the symmetty of Equation (1) that this doesn't make any 
difference. What does make a difference in the likelihood is a more reasonable split. In the current example, the 
maximum likelihood is obtained by an even split between cell 1 and cell 2. Now z = 20 and N - z = 20, and the 
binomial likelihood is 

L(z = 2010 = .5) 
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20! 20! 

= 1.38 x 1011 

.520 = 9.54 X 10-7 

.520 X .520 9.09 X 10-13 

L{z = 2010 = .5) (1.38 X 1011) X (9.09 X 10- 13) 

.1254. 

Here we see that an even split has a much higher likelihood than an extreme split. You are much more likely to 
obtain 20 Heads and 20 Tails in 40 tosses of a fair coin than no Heads and 40 Tails. For a parameter setting of 
o = .5, this is due entirely to the (~) term. An even split of 40 subjects can be accomplished in a vastly greater 
number of ways as compared to the one way for an extreme split. For a more detailed explanation of this 
combinatorial argument see the appendix. 

In the beginning of this section, we said that the predictive distribution was an averaged likelihood. An 
average, by definition, is an integral of the object being averaged with respect to a continuous probability 
distribution. The object being averaged is the likelihood and the probability distribution is for O. The parameter 0 
can only take on values between 0 and 1, so the average likelihood is 

Average Likelihood = 11 L(zIO) p{O) dO. (2) 

The Bayesian twist to this expression is that the probability of () can be refmed by taking into account the 
known frequencies of falling into these two cells. From Fig. 2 the ratio for cellI is 216/259 and the ratio for cell 
2 is 43/259 and we might take this as a good guess to help us allocate the subjects with unknown training status. 
This is just like the penny that we didn't know was fair, but had tossed a number of times and recorded the 
outcomes. The Bayesian formalism accomplishes this by constructing a posterior distribution for () based on these 
known training outcomes under the predicted pass column. Therefore, Equation (2) is amended by inserting the 
posterior distribution for () as conditioned on, say, y known successes from n trials. In this case, y = 216 and 
n = 259. 

The average likelihood of Equation (2) is now called the predictive distribution and written as 

Average Likelihood 11 L(zIO, N) p(Oly, n) d() (3) 

P{zln,y, N) 

- Predictive Distribution 

Using a computer program we can calculate Equation (3), the predictive distribution, for all values of z from z = 0 
to z = 40. Figure 5 shows a graph of this predictive distribution. Since the observed data of known frequencies is 
skewed to higher numbers In cell 1, the predictive distribution is also concentrated at higher values of z. The 
mode, the most probable value of z, occurs at z = 34 with 

P(z = 341n = 259, y = 216, N = 40) = .1560. 

Neighboring values start to taper off from this maximum value, so that by the time z reaches 27 going in the,; 
downward direction from the mode, 

P{z = 271n = 259, Y = 216, N = 40) = .0102 
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Figure 5: The Bayesian predictive distribution for the allocation of 40 subjects who were predicted passes (but 
who did not, or have not yet e!1tered training) into the predicted pass-actual pass cell. 

and when z reaches 38 going in the upwards direction from the mode 

P{z = 381n = 259, Y = 216, N = 40) = .0253. 

The bulk of the probability distribution resides between these two values with 

P{27 ::; z ::; 381n = 259, Y = 216, N = 40) = .9839. 

To make a reasonable allocation of subjects with unknown training status to cell 1 or cell 2, the predictive 
probability distribution. should be followed. A split of 34 subjects to cell 1 and 6 subjects to cell 2 is most 
probable. A split of 33 subjects in cell 1 and 7 subjects in cell 2 is next most probable, and so on. 

Exactly the same reasoning applies to the predicted fail column where we would like to make a reasonable 
allocation of the 156 students with an unknown training status. The predictive distribution for this allocation 
problem is presented in Fig. 6. Because N is larger (156 vs. 40) and because the known frequencies are smaller 
for cells 3 and 4, the distribution is more spread out. Only the range from z = 80 to z = 140 (where most of the 
probability lies) is sho~n on the graph. That most of the predictive probability distribution is contained within this 
range can be confinned by the calculation 

P{80 ::; z :::; 140ln = 63, Y = 44, N = 156) = .9944. 

For this case, what constitutes a reasonable split is more uncertain. The most probable value of z occurs af 
z = 109 with 

P{z = 1091n = 63, Y = 44, N = 156) = .0375 

10 
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Predictive Distribution Function 
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z 

Figure 6: The Bayesian predictive distribution for the allocation of J 56 subjects who were predicted fails into the 
predicted fail-actual pass cell. 

but the graph shows a smooth progression with only small incremental changes in probability as we step forward 
and backwards from the mode. For example, 

P(z = 108\n = 63, Y = 44, N = 156) = .0373 

and 
P(z = llO\n = 63, Y = 44, N = 156) = .0374. 

As a result, there is a broader range of splits that are reasonably probable than in the first allocation problem. 
As seen earlier, 109 students allocated to cell 3 and 47 students allocated to cell 4 is most probable, but 100 
students in cell 3 and 56 students in cell 4, or 120 students in cell 3 and 36 students in cell 4 are not unreasonable 
allocations either. 

DETERMINING AVERAGE NET SAVINGS 

Up to this point, we have examined these two allocation problems separately. But, in fact, to determine ~, the 
difference in attrition rates, both allocations must occur together. Fortunately, the two allocation problems are 
independent of each other. One concerns the subjects who are predicted passes while the other concerns subjects 
who are predicted fails. Since independence between the two predictive probability distributions holds, these 
probabilities can be multiplied to fmd their joint occurrence needed in order to calculate ~. In essence, the next 
step is to calculate a probability distribution for the savings due to implementation of the LCAC Selection System 
The savings distribution is a linear function of ~, and ~ is a function of the independent probabilities of the two 
predictive distributions. 

Any particular allocation strategy results in some ~. For example, suppose we are interested in the probability 
of ~ = .0581. This difference in attrition rates arises by allocating 34 students to cell 1, 6 students to cell 2, 109 
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students to cell 3, and 47 students to cell 4. This the most probable A because it is based on the two most 
probable allocations. See Fig. 7 for the 2 x 2 table reflecting the joint occurrence of these two independent 
allocations. The point estimate for the probability of failure without the selection system is 

Predicted Pass Predicted Fail 

216 + (34) 44 + (109) 
Actual Pass 

250 153 403 

43 + (6) 19 + (47) 
Actual Fall 

49 66 115 

299 219 518 

Figure 7: The most probable joint allocation of 196 subjects whose training status is unknown to the four cells of 
the 2 x 2 table. 

P(Attrite without selection system) 
115 
518 

.2220. 

The point estimate for the probability of failure with the selection system in place is 

P(Attrite with selection system) = 
49 

299 

.1639. 

Therefore, the difference in the two attrition rates is 

A = .2220 - .1639 = .0581. 

In the previous section, the predictive probability for each of these allocations was found. By multiplying the 
predictive probabilities for these two independent events, the result is 

P(ZCell 1 = 34 and ZCell 3 = 109) .1560 x .0375 

.0059. 

A subscript with the appropriate cell number is used to identify the predicted frequency for each of the two 
allocation problems. This probability of .0059 is assigned to A = .0581. 

What we are really interested in is the distribution of the savings due to the various As. For the one A just 
examined, this is 

Net savings (.0581 x 30 x $160,000) - $125, 000 

$153,880 

12 



and this particular net savings has a probability of .0059. A computer program was written to take all the 
independent combinations for ZCell 1 and zCell 3 and compute the net savings for each combination. That is, 
ZCell 1 was decremented from 40 to 0 and within this loop zCell 3 was decremented from 156 to O. The predictive 
probability was calculated for each ZCell 1 and ZCell 3. The probability of the joint occurrence of ZCell 1 and zCell 3 

was calculated from the individual predictive probabilities. Then, a ~ was calculated based on the particular 
values of ZCell 1 and ZCell 3, and the net savings was computed for this ~. When these operations are taken over 
all combinations of allocations, a distribution of net savings results. 

The final objective is to report the average net savings for this distribution and the standard deviation about this 
average. Consult Fig. 8 for what this kind of analysis arrives 'at as a justification for continued usage of the LCAC 
selection system. The average net savings is close to $160,000 with a standard deviation of about $100,000. 

Average = 

standard Deviation = 

-2 SD = 

+2 SD = 

$158,236 

$99,254 

-$40,272 

$356,744 

Figure 8: The average net savings due to implementation of the LCA C selection system. If a normal curve is used 
to approximate the distribution, the bottom two rows bracket about 95% of the net savings distribution. 

Assuming the Gaussian distribution as an approximation to the net savings distribution, then a 95% confidence 
interval around the average is about -2sd at the low end, and +2sd at the high end. This roughly brackets the net 
savings due to implementation of the LCAC Selection System between no savings and $350,000, as given in the 
Introduction 

It is important to note that every possible allocation strategy has been included in this average. Each allocation 
strategy has been weighted by the predictive probability distribution. Thus, more weight is given to the 
"reasonable" allocation strategies that follow the empirical data and less weight to the "extreme" allocation 
strategies that do not. 

13 
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APPENDIX 

THE COMBINATORIAL ARGUMENT 

In the predictive probability distribution, we always find the combinatorial factor, 

(~) = (N ~~)! zl" 

It gets modified by other terms in the predictive distribution (see Equation (19) in IUower [4]), but it has an 
influence in biasing an allocation strategy towards an even split as opposed to an extreme split. 

This appendix provides a tutorial on this combinatorial factor. It's main purpose is to provide an easy rationale 
for arguing against extreme splits in any allocation strategy. In addition, the ideas explained here also have a 
subtle, but profound, effect on all of scientific inference. The combinatorial factor underlies the concept of 
maximum entropy assignment to probability distributions. The interested reader may wish to consult Volume II of 
my Introduction to Scientific Inference for a thorough introduction to the maximum entropy principle. 

How would you allocate the 156 subjects to cells 3 and 4 of the 2 x 2 matrix? Of course, there is no absolutely 
clear cut answer to tlns question, short of knowing the training outcomes for these subjects. But there is an 
argument that most people would accept as reasonable. This is the combinatorial argument and it goes as follows. 

How many conceivable ways are there to divide up N candidates into two cells? Consider a small N so that 
the answer can be worked out easily enough. For example, if there are N = 4 candidates to be allocated to the 
predicted fail-actual pass cell and the predicted fail-actual fail cell, how many ways can this be done? There are 
only five possible strategies of allocating these four candidates to two cells. See Table 1 for a listing of these five 
strategies. 

Table 1: A listing of the five possible strategies for allocating four subjects to two cells. 

Strategy Cell 3 Cell 4 Number of ways 

1 4 0 1 
2 0 4 1 
3 3 1 4 
4 1 3 4 
5 2 2 6 

The fmal column gives the munber of ways each of these strategies can be accomplished. This number is 
calculated from the combinatorial formula given at the beginning of this appendix. It depends on the fact that each 
of the four candidates is an individual and distinct person. For ease of explanation, call these four candidates 
Alice, Bob, Carl, and Dawn, or a, b, c, d for short. Under strategies 1 and 2, there is only one way all four 
people can be placed in a cell. Under strategies 3 and 4, however, the strategy can be achieved in four different 
ways depending upon who goes into cell 3. For example, under strategy 4, one way is for Alice to go into cell 3 
and Bob, Carl, and Dawn to go into cell 4. The second way is for Bob to go into cell 3 and Alice, Carl and Dawn 
to go into cell 4. Now you can discern the pattern and easily find that the third way is for Carl to go into cell 3 
and Alice, Bob, and Dawn to go into cell 4, while the fourth and fmal way is for Dawn to go into cell 3 and Alice, 
Bob, and Carl to go into cell 4. 

Fot the fifth strategy, whlch represents an even split between the two cells, there are six ways to accomplish the 
strategy. Table 2 lists each one of the six distinct ways of allocating two candidates to cell 3 and two candidates to 
cell 4 using the shorthand notation for the names. 

15 



I Ii 

i I 

I: 

Table 2: The six possible ways of executing the fifth strategy of allocating two candidates to cell 3 and two 
candidates to cell 4. 

Way Cell 3 Cell 4 

1 ab cd 
2 ae bd 
3 ad be 
4 be ad 
5 bd ac 
6 eb ab 

The point of this example is to emphasize that a strategy implementing a rougbly even split into two cells is 
more likely than one that puts e>.ireme counts into the two cells. For just N = 4 candidates, the ratio is only 4:1 or 
6:1. When N becomes large, however, it is overwhelmingly more likely for a roughly even split between the two 
cells as opposed to more extreme counts. This argument is based solely on the combinatorial formula and has 
nothing to do with the chance, 0, of a candidate being assigned to one of the cells. Although 0 does eventually get 
woven into the predictive distribution, rigllt now we are highlighting the role of the combinatorial formula. 

For larger N, some numerical examples reveal the impact of the combinatorial argument. In our current 
problem, 156 candidates need to be allocated to cells 3 and 4. Another combinatorial formula indicates how many 
strategies exist (call tlns number K) for N candidates allocated to n cells. 

K = 
(N + n -I)! 
N! (n -I)! 

(156+2-1)! 

156! (2 - I)! 

157! 

156! I! 

157. 

There are always just K = N + 1 strategies for N candidates to go into n = 2 cells. 

Two of these K = 157 allocation strategies fall into the extreme category as discussed in the text. The first 
extreme strategy is to allocate all 156 candidates to cell 3 (the strategy most disfavorable to the LCAC selection 
system), and the second extreme strategy is to allocate all 156 candidates to cell 4 (the strategy most favorable to 
the LCAC Selection System). From our discussion of the example above, the combinatorial formula (as well as our 
unaided common sense) says that there is only one way of accomplishing these two extreme strategies. It is also 
easy to see that the next most e>.ireme strategy of placing 155 candidates in cell 3 and 1 candidate in cell 4 can be 
accomplished in 

( 156) 156! 
1 = 155! 11 = 156 ways. 

Now compare these numbers with those attached to a fairly even split. Take the even split allocation first. The 
strategy of placing 78 candidates in cell 3 and 78 candidates in cell 4 can be accomplished in 

( 156) 156! 45 
78 = 78! 78! = 5.83 x 10 ways. 
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This kind of ratio comparing an even split to an extreme split is what is meant by the phrase "is overwhelmingly 
more likely." Now, as mentioned above, this does not mean that the even split receives the highest probability in 
the predictive distribution. The predictive distribution also takes into account the actual empirical data, but the 
combinatorial fonnula greatly influences or modulates towards allocations that are evenly split. Thus, a split of 
109 candidates in ce113 and 47 candidates in cell 4 can be accomplished in 

( 156) 156! 40 
109 = 109! 47! = 2.00 x 10 ways. 

When numbers of this sort are combined with the frequency counts from the obselVed data, this allocation becomes 
the most probable of all. 

The great contribution of the Bayesian approach is to provide a quantitative way of combining information 
from the combinatorial fonnula and the observed data. We can see the vague outlines of how to do this intuitively 
with very small numbers, but our common sense fails us when we are forced to deal with large numbers. The 
predictive fonnula is just one example of the self-consistent, disciplined approach based on probability theory to 
matters of scientific inference. 
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